

1

LArTPC Event Display Ruminations
Mitch Soderberg

Aug. 17, 2011

Introduction

2

•The following is a quick update on a recent change I made
to the EventDisplay, and then a few slides to instigate
discussion about a “feature” inherent to the existing display.
‣The recent change: displaying of Hit objects on wire signal.
‣The discussion: Displaying very large amounts of data (i.e. - ArgoNeuT/
MicroBooNE TPC views) in ROOT.

Event Display with Hits Overlayed

3

Use Hit parameters to
create Gaussian
TPolyLines.

Event Display with Hits Overlayed

4

Gaussians are drawn
5-sigma wide.
(Hit object only
extends from -1,+1
sigma.)

Zooming in on Plane Views

5

Unlike TH1* objects,
TBox objects are not
“clipped” to the
TFrame that should
contain them. (Same
behavior is also true for
TPolyLines that now
represent Hits).

Zooming in on
EventDisplay views
does not work very
well right now.

Really Zooming In

6

Just a reminder...the
EventDisplay histograms
contain information about
every single ADC sample
for every wire in the TPC.

Some Numbers

7

Plane # Wires # Samples # “Pixels”

ArgoNeuT 240 2048 491,520

MicroBooNE
Induction 2400 9600 23,040,000

MicroBooNE
Collection 3456 9600 33,177,600

•The table below summarizes the main TPC numbers of interest for the EventDisplay.
•“# Samples” is the total number recorded per accelerator trigger (including pre/post sampling)
•ArgoNeuT samples at 5MHz for 410µs, MicroBooNE at 2MHz for 4.8ms
•A “pixel” is a single ADC sample from a single wire.

x2

x2

Screen Resolution

8

•My 15” MacBook Pro has pixel dimensions
of 1440x900 (at 110ppi).
•1,296,000 pixels

•A typical 30” monitor has pixel dimensions
of 2560x1600 (at 101.65ppi).
•4,096,000 pixels

MicroBooNE events have more “pixels” than your screen...
‣EventDisplay can’t simultaneously display all the information it knows about.
‣To simultaneously show all MicroBooNE information for a single plane, with time on the y-
axis, we would need to have two side-by-side stacks of 6 30” monitors (which would horribly
distort the true aspect-ratio of the events).

ROOT Behavior

9

•ROOT is aware of the dimensions of the window it is given to draw histograms within,
and will adjust the histogram to fit in that space.
•The image below is a screen-cap of a TH2F histogram I made in ROOT. The histogram

is 3200 bins tall x 3456 bins wide (i.e. - the size of one “frame” of the MicroBooNE
collection plane, which has 1/3 of the 9600 total time samples).
•It appears to be just a bunch of horizontal red lines spaced at a regular y%100 interval.

ROOT Behavior

10

Same histogram is displayed below, but I’ve increased the “height” of the TCanvas.

ROOT Behavior

11

Same histogram, but I’ve changed the range on the x-axis.

ROOT Behavior

12

Same histogram, but I’ve zoomed the range on the y-axis. Now
you can see the original histogram had alternating “lines” of

red and green. “Lines” were actually discontinuous.

ROOT Behavior

13

•ROOT automatically rebins histograms to have fewer bins than there are pixels in the
allotted drawing space. This rebinning process takes time.
•Drawing all the TPC planes on the same TCanvas necessarily increases the amount of

rebinning ROOT will have to do to fit everything in the window.

Drawing Speed

14

•I’ve started to look back into using TH2F histograms (which don’t suffer from the
“clipping” problem encountered when zooming) for displaying data.
•First exercise was to draw two histograms in a canvas. In one case (high-resolution),

the histograms were 3456x3200, while in the other (low-resolution) they were 346x320.
•The “low-resolution” histograms draw 100 times faster (0.15s) than the “high-

resolution” version (~14.2s). Note: this is just time to draw, not time to fill histogram.
•Have tried to use multithreading (via ROOT TThread class) to send each histogram to a

distinct CPU core...mixed results so far.

Low-Resolution High-Resolution

•Added new Gaussian shapes for displaying Hits over wires.
•Be aware of ROOTs default rebinning behavior when drawing histograms with more
bins than there are pixels on your screen.
‣Good thing about keeping track of every pixel is it allows zooming in .pdf/ROOT.
‣Bad thing is the increased memory/CPU required to keep track.

•We need to figure out how to display MicroBooNE data in a reasonable amount of time,
which is challenging due to the vast amount of data to deal with.
‣Low-resolution images for monitoring purposes?
‣Multi-threading to share the workload and improve speed.
‣Only draw the Hit objects (i.e. - don’t even try to draw the raw/calibrated information unless
specifically requested)?
‣Other ideas...

Conclusions

15

